Fig.1
If to solder ends wires these how it is shown on figs. 1, then the broken a secret chain middle part of which is formed by a copper wire will turn out. Let temperatures of ends steel wires and the first shut will have a the same value of temperature of Т1. If now to heat the second shut to the temperature of Т2, then on ends steel wires there will be a difference of potentials of U, the size of which is proportional to the difference of temperatures of Т2 - Т1 i.e. U = a(T2 - T1)
If instead of three wires to solder only two (steel and copper) and, as in the previous case, to heat a shut to the temperature of T2, and wires ends to support at the temperature of Т1 that on ends wires also will appear difference potentials. At shorting of such chain on a milliammeter the last will mark appearance of current which will flow continuously, if to support the difference of temperatures between the first and second shuts.
In the considered phenomenon the direct passing of thermal energy takes place to electric. In spite of it, extremely important feature, thermoelectricity during many years remained in the eyes of people rather by the amusing phenomenon, what by an important factor which can be used for the decision of large power problems. "Among the large openings of Oersted, Ampere and Faradey, - an academician А. F. Yoffe writes, - thermoelectricity came into a small notice. In future application of him to measuring of temperatures grew dark as compared to electromagnets, electric machines and transformers. So it and remained on the backyards of physics".
Position sharply changed only since, beginning approximately from 30th of our century, physicists began increased to study the thermo-electric phenomena in semiconductors.
Before to pass to the semiconductors, will consider, why difference of temperatures between the first and second the shuts of chain, made from three metallic wires, creates the difference of potentials. At first we will consider more simple case. If проволок ends from homogeneous material are at the different temperatures of Т1 and T2, then in this case electrons will move from more hot end of wire to her cold end in a greater number, what in retrograde. Hereupon a hot end will revive positively, and cold - negatively. Appearance positive and negative charges on the opposite ends of wire will result in appearance of electric-field, directed from the hot end of explorer to cold one. Because electrons diffuse from a hot end to cold in a greater number, what in retrograde, that results in the increase of accumulation positive and negative by volume charges, tension of electric-field in turn increases also. In spite of the continuously supported difference of temperatures, growth of charges on hot and cold parts of wire, eventually, will cease. It will happen because tension of electric-field will grow to such value which compensation forces of diffusion in future. As a result on the ends of wire at this difference of temperatures of Т2- Т1 the permanent difference of potentials will be set.
Some more difficult it will be in the case of two heterogeneous metals.
It was higher marked that the nascent difference of potentials, or so-called thermo-electromotive force, is proportional to the difference of temperatures. It is necessary from here, that the coefficient of thermo-electromotive force of an is numeral equal to the size of difference of potentials, arising up at the difference of temperatures in one degree. In general speaking, the coefficient of thermo-electromotive force of an in turn also depends on a temperature, however for some pair of metals this dependence is not strongly expressed.
For most metals the numeral values of an in general are small.
In a table.1 values over of an are brought for some metals and alloys in relation to platinum.
Table 1
Value of coefficient of thermoelectromotive force for some metals and alloys