Abludent up electrons will charge a supremum until the равновесное state which a transversal current will disappear at will not come. This state will come then, when electric force Her it will become to equal magnetic force of еVН i.e. еЕ = еVН. A current, current through a semiconductor plate, will be equal
I = nеVаd
where n is a concentration of transmitters of current.
Putting a value V, got from the last formula, will have
Е = IH/ nead
On the other hand, we found out that difference of potentials between points C and D is equal U = Еа. Putting his value instead of Е, will get final expression for
U = IH/ned
From this formula evidently, that the difference of potentials, arising up between two points of semiconductor, is proportional to both the current of I and tension of magnetic-field of Н. Shot of 1/ne for every this semiconductor, being at a the same temperature, is a permanent size, getting the name permanent Hall. More exact theory, taking into account participating in the current of electrons, possessing different speeds, gives for permanent Hall, usually designated through R, expression
R = 3π/8(1/ne) *
Thus, studying the effect of Hall in semiconductors, measuring the size of R, it is possible to determine the concentration of transmitters of n, and on a sign arising up between points C and D of difference of potentials is a mechanism of conductivity of semiconductors. For a p-type semiconductor, permanent Hall has a positive value, and for electronic - negative.
It is necessary to mean that by means of effect of Hall it is possible to determine the concentration of transmitters of current only in semiconductors, possessing some by one mechanism of conductivity - p-type or electronic. If a semiconductor has the mixed or own conductivity, then a passing in a semiconductor plate current is conditioned by motion of holes one-way and electrons in opposite. At the set direction of current and magnetic-field of rejection of holes and electrons coincide: and those, et al deviate or to the infimum of plate, or to overhead. Arising up between points C and D the difference of potentials of U will be determined in this case already by more difficult expression, where the concentrations of transmitters of current and their mobility enter. It is undifficult to understand from the cleanly physical considering, that a size and sign of U will depend on correlation of sizes of concentrations of holes and electrons and them mobility. In the separate special cases U can equal a zero.
For the semiconductors of the mixed type - permanent Hall determined by expression (here, U is the mobility of current carriers)