Измерения с помощью датчиков, преобразователей, сенсоров
    Transducers, gauges, sensors -  Information portal  © 2011 - 2017                                                                                                            Use of material is possible by placing an active link
характеристики преобразователей
Home >>  Publication >> Semiconductor measuring transducers.. temperature, strain gauge...
continuation 1  2  3  4
русский / english
General principles of transducers (sensors) 
    In the strict sense of the word transducer is a device that converts a change in one quantity changes in the other. In terms of electronic transmitter ... >>>
The principles of the transformation of the measured physical parameters 
    In each converter, which converts the element is based on certain physical principle, which is associated with the electrical characteristics of the device so that a change in the quantity being measured   >>>
датчики, сенсоры, измерительные преобразователи


Temperature, thermoelectricity

Magnetic fields

Mechanical stress, strain

Force, pressure, displacement, flow

Humidity, gases

Photo effects, light

Ionizing radiation

Electricity, capacity, piezoelectricity

Physical properties of materials

Literature on transducers

News, exhibitions, conferences

About the project. Contacts

See also:
Temperature sensors, thermocouple             Sensors of mechanical stress
Force, pressure, flow                                    Phototransducers
Ionization transducers                                    Hall sensors
Датчик магнитного поля
   Semiconductor measuring transducers of deformation, temperature and magnetic-field for application in the conditions of radiation irradiation, wide range of temperatures and magnetic fields
   V.A Belyakov, N.T.Gorbachuk, P.A.Didenko, E.A. Lamzin, etc. Semiconductor measuring converters of deformation, temperature and magnetic field for application in conditions of a radiating irradiation, wide range of temperatures and magnetic fields. Questions of the nuclear science and technics. A series: the electrophysical equipment. 3 (29), 2005. St. Petersburg, Russia.

   Abridged version of the article: Semiconductor Sensors

      Semiconductor materials possess a high sensitiveness to different external influences and at development on their basis of measuring transducers (sensors) of physical sizes  /15/ aim to use such materials and construction of pickoff, that a transducer maximally reacted on a measureable parameter and scorned small on other. In connection with development of criogenics technique, atomic energy demand grows on transducers are capable of working in the range of temperatures from climatic to cryogenics, magnetic fields to 10 Тл and possessing radiation stability /1,4/.
      In modern sensors of creation semiconductor material is used as a rule in a pellicle kind, advantages of which consist in possibilities of the use of integral technologies, creations of cerouss of transducers with identical descriptions, more subzero cost of the got pickoffs of and other
      By us for creation of measuring transducers tapes of gaas are used on a semiinsulating gaas, tapes of polisilicon on linings  from silicon, tapes of germanium on linings from a gaas, and also by volume dispersible germanium. Researches are conducted in the range of temperatures 4.2-400 К.

1. Measuring transducers of mechanical deformations

   At measuring of mechanical deformations by means of single strain gauge in the wide range of temperatures, in the conditions of the difficultly tense states of object, in presence the magnetic fields, exactness of measuring considerably goes /down 2,3/. New possibilities in the increase of exactness of measuring are opened by the use of tapes on insulating bases, when a pickoff is formed as a certain microcircuit of crystallgraphicly by oriented, and the construction of transducers allows to remove transversal strainsensetivity /4,5/.
   For creation of measuring transducers of mechanical deformation tapes of poly silicon n and р-type of conductivity are used, in thick 0.6 mkm and alloying levels a 10^17 - 5·10^19 cm^ - 3 . the Alloying admixture the coniferous forest served as for p -silicon.

     On a fig. 1 the schematic image of transducers of deformation and polarity of connecting of feed and measuring devices is shown. He consists of integral pickoff 1, silicon executed on the basis of tape, besieged on lining 2 from single-crystal silicon with the layer of oxide on a surface. Electric conclusions 3 made from the aluminium wire of d=80mkm, the ends of which are provided with the strips of metal, solderable by an ordinary solder. A construction and integral execution of pickoff of sensor provide термо thermo indemnification of basic parameters, indemnification of influence of magnetic-field and absence of transversal tenzo sensitiveness. Size of base of sensor of 8мм, entrance and output electric resistances depending on the level of alloying and thickness of tapes 200 -3000 Ohm, the current of feed depends on the size of resistance and as a rule is within the limits of 1 -10mA. Distinction in the sizes of electric resistance of sensors to one party  does not exceed 5%, and if necessary party of sensors can be formed from practically identical on technical descriptions. Tenzo sensitiveness at tension of feed of 5В approximately 100mkV/mln^- 1. Size of a zero (initial) output signal of sensor of Uо ~ 20mV and if necessary maybe to be driven in by near to the zero. Temperature dependence of the strain sensitiveness no more than 0,02%, and Uо ~ 20mkV/К. Descriptions of basic types of transducers of deformation of resulted in the table of I.
   Principle of work of strain gauge consists in the change of electric resistance of capacitance-resistance elements of integral microcircuit at the appendix of mechanical deformation along the axis of sensor, to the loss of indemnification microcircuits and appearance, as a result of it, electric tension of Uв on measuring contacts at the feed  of sensor a current or tension ( fig. 1). Preliminary graduate a sensor i.e. getting dependence of output tension of Uв of size of mechanical deformation of e  in future on the size of output tension of sensor, hardly envisaged on an object, determine deformation of object.
   Measuring at a stationary temperature is considerably simpler, than in the conditions of changing temperature. At a stationary temperature the change of output signal of Uв of strain gauge depends only on the size of deformation along the axis of sensor and size of current or tension of feed (Iп, Uп), maximally possible sizes of which specified in the passport of sensor. The maximally legitimate values of Iп or Uп get out from the condition of unachievement of heating of sensor at which his testimonies begin to depend on nascent instability of temperature or the energy dispersed on a sensor changes the terms of heat exchange in the point of measuring. The sizes of Iп and Uп if necessary can be diminished as compared to passport values. Thus all other technical descriptions diminish proportionally. The choice of chart of feed (Iп or Uп) of fundamental value does not have, but can insignificantly tell on temperature dependence of sensitiveness and zero (initial) output signal. The size of deformation at measuring in the conditions of termostability is determined on a formula:
ε  = (Uв - Uо)/k                  (1)
where Uв is an output signal of sensor after appearance of deformation of e  investigated object, Uо is an initial output signal which after editing of sensor on an object can insignificantly differ from indicated in a passport, as in a passport Uо is indicated for free strain gauge, k =ΔUв /Δε  - strain sensitiveness sensor.
   For editing of sensor on the object of research can be used widely applied in strain measures glues of БФ- 2, BC - 350 et al, providing sufficient inflexibility of editing. Admission of the use of this connective material can be tested on the size of creep of testimonies of sensor after the ladening of test beam which must not exceed the permissible error of measuring.
   Measuring at an unstable temperature become complicated that here due to the difference of coefficients of thermal expansion of materials of strain gage and object measuring, there are additional thermal tensions and deformations in glued on strain gauge. It causes the change of a zero output signal of sensor, measured in the free state. In an order to be delivered from influence of termotensions of sensor on exactness of measuring, next to a measuring (by a worker) sensor the identical sensor of comparison is set glued on a free plate, made from material of object of measuring. Thus for the receipt of size of measureable deformation it is necessary to take advantage of formula
ε  = [(Uв - Uо) - (Uв1 - Uо1)] / k
where Uв and Uо - accordingly the measured and zero weekend signals of working sensor at this temperature of Т, Uв1 and Uо1 сооветcтвенно the measured and zero weekend signals of sensor of comparison at this temperature of Т, k - strain sensitivity at this temperature. If zero output signals of working sensor and sensor of comparison differ insignificantly, then the above-mentioned formula is simplified:
ε  = (Uв - Uв1)/k
   At determination of coefficient the tenzo sensitiveness sign of deformation of compression is accepted by negative and it is taken into account in passport data on a sensor.

- 1 -
Датчики, преобразователи. Sensors, transducers